The Generalized Serial Test Applied to Expansions of Some Irrational Square Roots in Various Bases*

By W. A. Beyer, N. Metropolis and J. R. Neergaard

Abstract

A brief summary is given of the application of the generalized serial test for randomness to the digits of irrational $\sqrt{ } n$ in bases t where $2 \leqq n, t \leqq 15$. The results are consistent, except for a few aberrations, with the hypothesis of randomness of the digits.

This is a brief report on the application of the generalized serial test (see [1]) for randomness to the expansions of some irrational $\sqrt{ } n$ in various bases. It can be considered as an extension of the work Good and Gover [1] have done with 10,000 binary digits of $\sqrt{ } 2$. I. J. Good (private communication) has remarked that some of the tests used in [4] are special cases of the generalized serial test.

The conclusion resulting from this study is that the results, except for a few aberrations given in Table 3, are consistent with the hypothesis of randomness of the digits of the square roots investigated. Since a total of about 2400 tests were made, perhaps the aberrations are not surprising, if one notes that $2400^{-1}=.0004$.

For completeness, a recapitulation is given (from [1]) of the generalized serial test for randomness as used here. Let a sequence of N digits in base $t(t=2,3, \cdots)$ be given and let the sequence be circularized; i.e., the last digit is considered as being followed by the first digit. Let n_{I} be the number of occurrences of the ν-plet $I=$ ($i_{1}, i_{2}, \cdots, i_{\nu}$) in the circularized sequence. Define

$$
\psi_{0}^{2}=\psi_{-1}^{2}=0, \quad \psi_{\nu}^{2}=\frac{t^{\nu}}{N} \sum_{I}\left(n_{I}-\frac{N}{t^{\nu}}\right)^{2},
$$

and

$$
\nabla^{2} \psi_{\nu}^{2}=\psi_{\nu}^{2}-2 \psi_{\nu-1}^{2}+\psi_{\nu-2}^{2}
$$

for $\nu \geqq 1$. The distributions $\nabla^{2} \psi_{v}^{2}$ are asymptotically chi-square with the number of degrees of freedom equal to $t^{\nu}-2 t^{\nu-1}+t^{\nu-2}$.

The authors [3], [4] have computed N digits of the fractional part of $\sqrt{ } n$, base t, for $n=2,3,5,6,7,10,11,13,14$, and 15 in accordance with Table 1 .

This was accomplished by computing $88064=43 \cdot 2^{11}$ binary digits of the fractional part of $\sqrt{ } n$ and then changing base. In the conversion from binary to base t, it can be shown that $N=2^{11}[43 \log 2 / \log t]$ digits are accurate, where [] denotes largest integer. (Note that for $t=6, N=2^{15}$.) Because of some minor technical difficulties, the last 1 or 2 digits may not be accurate. For this reason 88062 replaces 88064 in the title of [3].

[^0]| t | N | t | N |
| ---: | :---: | :---: | :---: |
| 2 | 88046 | 11 | 24576 |
| 3 | 55296 | 12 | 22528 |
| 5 | 36864 | 13 | 22528 |
| 6 | 32768 | 14 | 22528 |
| 7 | 30720 | 15 | 20480 |
| 10 | 24576 | | |

Table 1. Number of computed digits of $\sqrt{ } n$ in base t.

The quantity $\nabla^{2} \psi_{v}^{2}$ is computed for each whole block of length $x \cdot 1000$ of $(\sqrt{ } n)_{t}$; i.e., for the blocks with digits: $1 \rightarrow x \cdot 1000,(x \cdot 1000+1) \rightarrow 2 x \cdot 1000$, etc., and also for the entire sequence of N digits of $(\sqrt{ } n)_{t}$. The values of ν and x selected are listed in Table 2.

This paper will list only the aberrations observed; if the chi-square level (tail area) is less than .007, it is listed in Table 3. The remainder of the data has a χ^{2} level greater than 007.

It should be noted that with the exception of $\left((13)^{1 / 2}\right)_{12}$, the aberrations occur in the intermediate digits and disappear when a larger sample is examined.

Remark. Since the work of Good and Gover [1] is referred to several times, it should also be mentioned that their suggestion for calculating $\sqrt{ } 2$ (or $\sqrt{ } m$ in [2]) is generalized in [5].

Acknowledgment. The computations were made on the MANIAC II computer in our laboratory.

Appendix. Certain errors are noted in the report of the values of $\nabla^{2} \psi_{\nu}^{2}$ ($1 \leqq \nu \leqq 10$) for 10,000 binary digits as given in Table 1 of Good and Gover [1]. These errors apparently arose from two sources: rounding error in the value of $\nabla^{2} \psi_{v}^{2}$ itself and the fact that their 10,000 th binary digit was obtained as 0 , whereas in fact it is a 1 . For $\nu=8$, block 5 should be 37.2 and block 8 should be 78.8 . The entries in block 10 should be replaced by the sequence (starting with $\nu=1$): $1.3,0.0,0.7,10.3$,

t	ν	x
2	$1,2, \ldots, 10$	10
3,5	$1,2,3,4$	10
$6,7,10$	$1,2,3$	5
$11,12,13,14,15$	1,2	5

Table 2. Values of ν and x for the various bases t.

n	t	ν	Block	Level
2	2	2	$10001 \rightarrow 20000$.0058
2	14	1	$20001 \rightarrow 25000$.0053
3	3	1	$10001 \rightarrow 20000$.00025
3	7	1	$20001 \rightarrow 25000$.0015
5	15	1	total	.004
7	7	1	$25001 \rightarrow 30000$.006
10	5	2	$30001 \rightarrow 40000$.005
11	5	2	$10001 \rightarrow 20000$.0066
13	3	2	$40001 \rightarrow 50000$.00027
13	12	1	total	.0015
14	6	2	$15001 \rightarrow 20000$.0023

Table 3. Aberrations.
6.1, 16.6, 22.1, 67.2, 130, and 236. The entries in the block marked "whole" should read: .4, .5, 3.4, 2.6, $9.1,19.8,51.5,58.9,128,242$. The four which are boldface were correct in their original table.

University of California

Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87544
\rightarrow I. J. Good \& T. N. Gover, "The generalized serial test and the binary expansion of $\sqrt{ } 2, "$ J. Roy. Statist. Soc. Ser. A, v. 130, 1967, pp. 102-107.
2. I. J. Good \& T. N. Gover, "Corrigendum," J. Roy. Statist. Soc. Ser. A, v. 131, 1968, p. 434.
3. W. A. Beyer, N. Metropolis \& J. R. Neergaard, "Square roots of integers 2 to 15 in various bases 2 to 10: 88062 binary digits or equivalent," Math. Comp., v. 23, 1969, p. 679. RMT 45.
4. W. A. Beyer, N. Metropolis \& J. R. Neergaard, "Statistical study of digits of some square roots of integers in various bases," Math. Comp., v. 24, 1970, pp. 455-473.
5. C. J. Everett \& N. Metropolis, "Approximation of the ν th root of N," Discrete Mathematics. (To appear.)

[^0]: Received September 29, 1969, revised December 29, 1969.
 AMS Subject Classifications. Primary 1050; Secondary 1009, 6299.
 Key Words and Phrases. Serial test, generalized serial test, statistics of square-root digits, square roots, square roots in several bases, expansions of square roots, random sequences, statistical study of digit sequences.

 * Work performed under the auspices of the U. S. Atomic Energy Commission.

